Author Archive > admin

57. Электрохимическая очистка сточных вод

Электролиз, при котором имеет место направленное движение ионов и заряженных дисперсных частиц и протекание реакций окисления на аноде и восстановления на катоде.

Электрофлотация - удаление твердых частиц дисперсной фазы осуществляется путем флотации их пузырьками водорода и кислорода, образующихся в результате электролиза водной части осветляемой жидкости. Катод 2H2O + 2e -> H2 + 2OH-. OH - ионы движутся в аноду, где отдают свой заряд с выделением O2. 4OH– 4e ->2H2O + O2.

По сравнению с обычной флотацией пузырьки по размерам на 1 – 2 порядка меньше. Пузырьки – однородны и выделяются в больших количествах.

Электрофорез – процесс переноса частиц в электрическом поле. Причина – наличие разноименных зарядов у разных фаз. В результате возникновения электрического поля м/у электродами, благодаря малым размерам частиц дисперсной фазы происходит перенос отрицательно заряженной дисперсной фазы к положительному электроду. Заряд на частицах обусловлен наличием на их поверхности двойного электрического слоя из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, либо за счет ионизации поверхностных молекул вещества.

Электрокоагуляция – в процессе анодного растворения образуются коагулянты – гидроксиды металлов, которые снимают, поверхностный заряд частиц под воздействием электрического поля.

Fe0 – e + H2O -> Fe(OH) + H+

Fe(OH) – e + H2O -> Fe(OH)2 + H+

58. Методы удаления шестивалентного хрома. Метод удаления из стоков цианидов. Методы удаления тяжелых металлов из сточных вод

В настоящее время известно большое количество способов очистки сточных вод от Cr(6+): электрохимические /1/, адсорбционные /2/, ионообменные /3/ и др.

Электрохимические методы являются энергоемкими и не обеспечивают полного извлечения Cr(6+) из растворов.

При использовании адсорбционных и ионообменных способов загрязняются сами сорбенты Cr(6+) - смолы, торф, уголь и прочие, - после чего требуются дополнительная очистка или их захоронение.

Недостатками этого способа являются:

- длительность процесса и использование агрессивных реагентов;

- дополнительное загрязнение сточных вод железом (2+; 3+);

- увеличение массы твердой фазы.

Существует множество методов обработки сточных вод с целью удаления ионов хрома: восстановление, ионный обмен, электролиз, электрохимическое осаждение, испарение, экстракция растворителем, обратный осмос, химическое осаждение и адсорбция. Недостатки большинства этих методов — высокие эксплуатационные затраты или необходимость удаления ила, загрязненного тяжелыми металлами. Много исследований направлено на получение дешевых адсорбирующих веществ наподобие активированного угля.

Преимущества адсорбции на оксиде железа Fe2O3 — сравнительно большая поглотительная способность, очень короткое адсорбционное время, легкое отделение от загрязняющей примеси.

В этом исследовании с целью удаления Cr(VI) из модельной сточной воды, содержащей хромовую кислоту или бихромат калия, использован гамма-Fe2O3.

Способ включает промывку исходных осадков, разделение путем уплотнения на сливную воду и уплотненный осадок, обработку его кислотой, разделение на твердую фазу (Ф) и жидкую Ф, содержащую ионы тяжелых металлов (ТМ), смешение жидкой Ф с нейтрализующим агентом и последующее разделение смеси на шлам, содержащий ТМ, и осветленную жидкую Ф, сливную воду используют в качестве нейтрализующего агента. Способ включает анаэробное сбраживание исходных осадков, промывку сброженных осадков водой, разделение путем уплотнения на сливную воду и уплотненный осадок, кислотную обработку осадка ведут в две ступени: на первой из которых уплотненный осадок смешивают с промывной водой и кислотой с последующим отделением кислой сливной воды от уплотненного кислого осадка, который на второй ступени аэрируют в присутствии ацидофильных микроорганизмов и/или смешивают с кислотой и окислителем, после чего обработанный осадок делят на твердую Ф и жидкую Ф, содержащую ионы ТМ, жидкую фазу смешивают с нейтрализующим агентом с последующим разделением смеси на шлам, содержащий ТМ и осветленную жидкую Ф, а при смешении жидкой Ф с нейтрализующим агентом вводят кислую сливную воду. Позволяет сократить расход щелочных реагентов, снизить расход кислотных реагентов, повысить степень удаления ТМ из твердой и жидкой Ф осадка, снизить нагрузку по взвешенным веществам и аммонийному азоту на очистные сооружения

59. Ионообменная очистка сточных вод

Ионообменный метод – это метод обмена ионами находящимися в растворе и ионами, присутствующими на поверхности твёрдой фазы (ионита). Очистка производственных сточных вод методами ионного обмена позволяет извлекать и утилизировать ценные примеси, ПАВ или радиоактивные вещества.

Важнейшим свойством ионитов является их подготовительная способность, так называемая обменная емкость. Полная ёмкость ионита – количество находящихся в сточной воде грамм-эквивалентов ионов, которое может поглотить 1 м3 ионита до полного насыщения.

Men+ + H[K] = Me[K] + nH+

Men+ + Na[K] = Me[K] + nNa+

Men+ - катион находящийся в сточной воде

К – сложный комплекс катионита

Характерной особенностью ионитов является их обратимость то есть возможность проведения реакции в обратном направление, что и лежит в основе их регенерации. Различают химическую, термохимическою, и электрохимическую регенерацию.

60. Биологическая очистка сточных вод

Большое влияние на биологическое окисление оказывает кислородный режим и наличие токсичных веществ в среде. Токсичное действие на биологические процессы могут оказывать органические и неорганические вещества. Биологическая очистка сточных вод может осущзествляться как в естественных условиях (поля орошения, поля фильтрации, биологические пруды), так и в специальных сооружениях (аэротенки, метантенки).

Использование бактерий для очистки вод.

Органические вещества + O2 + N + P?(микроорганизмы) + CO2 + H2 + биологически не окисляемые растворимые вещества.

Факторы влияющие на биологическую очистку:

- концентрация водородных ионов (pH)

- кислородный режим и наличие токсичных веществ в среде

61. Твердые отходы металлургии и теплоэнергетического комплекса, их утилизация

Металлургия.

В результате взаимодействия золы топлива, компонентов пустой породы и флюсов образуются металлургические шлаки. В зависимости от состава различают основные, в которых преобладают оксиды кальция и магния; кислые, отличающиеся повышенным содержанием оксидов кремния и алюминия, и нейтральные – доменные шлаки. Шлаки содержат богатый спектр химических соединений, поэтому являются ценным сырьем для получения строительных материалов и изделий, являющихся более качественными и дешевыми, чем получаемые из природного сырья.

Основным способом переработки шлаков в настоящее время является их грануляция.

Сталеплавильные шлаки содержат железо, MnO, различные оксиды и сульфиды. Около половины перерабатываемой массы этих шлаков идет на изготовление щебня, около трети используется в качестве оборотного продукта, примерно пятая часть перерабатывается в удобрения для сельского хозяйства. При переработке этих шлаков с помощью электромагнитных сепараторов из них извлекается металл.

Согласно химическому составу шлаки цветной металлургии могут быть условно объединены в три группы:

1. шлаки никелевых заводов и часть шлаков медных заводов, отличающихся малым содержанием цветных металлов и железа.

2. медные шлаки, отличающиеся значительным содержанием железа, малым содержанием меди и наличием?5% Zn и Pb.

3. оловянные, свинцовые и часть медных шлаков, отличающихся значительным содержанием Zn, Pb и Sn.

Технологическая схема переработки шлаков выбирается в зависимости от их состава и физико-химических свойств и может включать как гидрометаллургические, так и пирометаллургические способы извлечения металлов. При пирометаллургическом способе осуществляют восстановление металлов из их безводных соединений в условиях высоких температур. Гидрометаллургический метод связан с восстановлением металлов из водных растворов их соединений различными методами.

Энергетические установки.

Основными компонентами, выбрасываемыми в атмосферу при сжигании различных видов топлива в энергоустановках, являются CO2 и H2O, продукты неполного сгорания топлива – оксид углерода, сажа, углеводороды, несгоревшие частицы твердого топлива, зола, шлаки и прочие механические примеси. По объему образования и составу твердые отходы сжигания топлив-золы и шлаки – близки к металлургическим шлакам. На 80-90% химический состав золошлаковых отходов представлен оксидами Si, Al, Fe, Ca и Mg, помимо этого в них присутствуют соединения Ti, V, Ge, Ga, S, а также несгоревшие частицы топлив. Золы сланцев и торфа содержат значительные количества CaO и используются для известкования кислых почв вследствие содержания значительных количеств К и Р, а также микроэлементов, необходимых ряду с/х культур, они применяются практически без какой-либо дополнительной обработки в качестве удобрений. Некоторые виды золошлаковых отходов используют в качестве агентов очистки промстоков.

Золы углей и нефтей содержат многие металлы. Максимальные концентрации Sr, V, Zn, Ge в золе углей могут достигать 10 кг/т. В золе нефтей содержание V2O5 в отдельных случаях достигает по массе 65%. Зола торфа содержит значительные количества U, Co, Cu, Ni, Zn, V, Pb.

Экологическое совершенствование теплоэнергетики идет по различным взаимодополняющим направлениям.

– улавливание, обезвреживание и целевая переработка газообразных выбросов, использование твердых отходов в других производствах и минимизация водопотребления.

– "улучшение" топлива путем предварительного удаления из него вредных примесей или переработки твердого горючего на жидкие продукты.

– использование принципиально отличных от реакции горения источников энергии.

Страница 231 из 642« Первая...102030...229230231232233...240250260...Последняя »