Archive > июня 2012

Вопрос 15

Распредеденность терминов в суждениях

В логических операциях с суждениями возникает необходимость установить, распределены или не распределены его термины — субъект и предикат. Термин считается распределенным, если он взят в полном объеме. Термин считается нераспределенным, если он взят в части объема.

Рассмотрим, как распределены термины в суждениях А, Е, I, О.

Суждение А (Все S суть Р). «Все студенты нашей группы (S) сдали экзамены (Р)». Субъект распределен, он взят в полном объеме: речь идет обо всех студентах нашей группы. Предикат этого суждения не распределен, так как в нем мыслится только часть лиц, сдавших экзамены, совпадающая со студентами нашей группы.

Таким образом, в общеутвердительных суждениях S распреде­лен, а Р не распределен. Однако в общеутвердительных суждениях, субъект и предикат которых имеют одинаковый объем, распределен не только субъект, но и предикат. К таким суждениям относятся общевыделяющие суждения, а также определения, подчиняющиеся правилу соразмерности.

Суждение Е (Ни одно S не есть Р). «Ни один студент нашей группы (S) не является неуспевающим (Р)». И субъект, и предикат взяты в полном объеме. Объем одного термина полностью исключа­ется из объема другого: ни один студент нашей группы не входит в число неуспевающих, и ни один неуспевающий не является студен­том нашей группы. Следовательно, в общеотрицательных суждени­ях и S, и Р распределены.

Суждение I (Некоторые S суть Р). «Некоторые студенты нашей группы (S) — отличники (Р)». Субъект этого суждения не распре­делен, так как в нем мыслится только часть студентов нашей груп­пы, объем субъекта лишь частично включается в объем предиката. Но и объем предиката лишь частично включается в объем субъекта: не все, а только некоторые отличники — студенты нашей группы.

Следовательно, в частноутвердительном суждении ни S, ни Р не распределены.

Суждение О (некоторые S не суть Р). «Некоторые студенты нашей группы (S) — не отличники (Р)». Субъект этого суждения не распределен, пре­дикат распределен, в нем мыслятся все отличники, ни один из кото­рых не включается в ту часть студентов нашей группы, которая мыслится в субъекте. Следовательно, в частноотрицательном сужде­нии S не распределен, а Р распределен.

Вопрос 17

§ 4. Логические отношения между суждениями
Простые суждения
Несравнимыми среди простых являются суждения, имеющие различные субъекты или предикаты. Таковы, например, два суждения: «Среди космонавтов есть летчики»; «Среди космонавтов есть

женщины».

Сравнимьши являются суждения с одинаковыми субъектами и предикатами и различающиеся связкой или квантором. Обычно их называют суждениями одинаковой материи. Например: «Все амери­канские индейцы живут в резервациях»; «Некоторые американские индейцы не живут в резервациях».

Отношения между простыми суждениями обычно рассматрива­ются с помощью мнемонической схемы, называемой логическим квадратом. Его вершины символизируют простые катего­рические суждения — А, Е, I, О; стороны и диагонали — отношения между суждениями.

Среди сравнимых различают совместимые и несовместимые суждения.

К совместимым относятся суждения, которые одновременно могут быть истинными. Различают три вида совместимости: 1) эк­вивалентность (полная совместимость), 2) частичная совмести­мость (субконтрарность) и 3) подчинение.

1. Эквивалентными являются такие суждения, которые имеют одинаковые логические характеристики: одинаковые субъ­екты и предикаты, однотипную — утвердительную или отрицатель­ную — связку, одну и ту же выраженную квантором количественную характеристику. С помощью логического квадрата отношения между простыми эквивалентными суждениями не иллюстрируются.

2. Частичная совместимость характерна для суждений I u О, которые могут быть одновременно истинными, но не могут быть одновременно ложными.

3. Подчинение имеет место между суждениями А и I, Е и О. Для них характерны следующие две зависимости.

При истинности общего суждения частное всегда будет истин­ным

При ложности частного суждения общее суждение также будет ложным

Отношение несовместимости.

Несовместимыми являются суждения А и Е, А и О, Е и I, которые одновременно не могут быть истинными. Различают два вида несовместимости: противоположность и противоречие.

1. Противоположными (контрарными) являются суждения А и Е, которые одновременно не могут быть истинными, но могут быть одновременно ложными.

2. Противоречащими (контрадикторными) являются сужде­ния А и О, Е и I, которые одновременно не могут быть ни истин­ными, ни ложными.

Hесовместимые единичные суждения могут находиться лишь в отношении противоречия и не могут находиться в отношении противоположности, ибо каждому от­дельному предмету может быть либо присущ, либо не присущ оп­ределенный признак.

?

Вопрос 18

§3. Сложные суждения

1. Соединительные (конъюнктивные) суждения.

Соединительным, или конъюнктивным называю суждение, со­стоящее из нескольких простых, связанных логической связкой «и».

Соединительное суждение может быть как двух-, так и многосо­ставным; в символической записи: р ^ q ^ г ^... ^ n.

В языке соединительное суждение может быть выражено одной из трех логико-грамматических структур.

1. Соединительная связка представлена в сложном субъекте по схеме: S1 и S2 есть Р. Например: «Конфискация имущества и лише­ние звания являются дополнительными уголовно-правовыми сан­кциями».

2) Связка представлена в сложном предикате по схеме: S есть P1 и P2. Например: «Преступление — это общественно опасное и про­тивоправное деяние».

3) Связка представлена сочетанием первых двух способов по схеме: S1 и S2 есть P1 и Р2. Например: «С полицмейстером и прокуро­ром Ноздрев тоже был на «ты» и обращался по-дружески» (Н.В. Го­голь).

Соединительное суждение истинно при истинности всех состав­ляющих его конъюнктов и ложно при ложности хотя бы одного из них. Условия истинности суждения р ^ q показаны в таблице (рис. 31), где истинность обозначена И, а ложность — Л. В первых двух столбцах таблицы р и q берутся как независимые и принимают поэ­тому все возможные сочетания зна­чений И и Л: ИИ, ИЛ, ЛИ, ЛЛ. В третьем столбце показано значение суждение р л q. Из четырех построч­ных вариантов истинным оно явля­ется лишь в 1-й строке, когда истин­ны оба конъюнкта: и р, и q. Во всех остальных случаях оно ложно: во 2-й и 3-й строках в силу ложности одного из членов, а в 4-й в силу ложности обоих членов.

Вопрос 19

Условные (импликативные) суждения.

Условным, или импликативным, называют суждение, состоя­щее из двух простых, связанных логической связкой «если.., то...». Например: «Если предохранитель плавится, то электролампа гас­нет». Первое суждение — «Предохранитель плавится» называют ан­тецедентом, второе — «Электролампа гас­нет» — консеквентом (последующим). Если антецедент обозначить р, консеквент — q, а связку «если..., то...» знаком «—>», то имплика-тивное суждение символически можно выразить как p—>q.

Условия истинности импликативного суждения показаны в таб­лице. Импликация истинна во всех случаях, кроме одного:

при истинности антецедента и ложности консеквента (2-я строка) импликация всегда будет ложной. Сочетание истинного антецедента, например «Предохранитель плавит­ся», и ложного консеквента — «Электролампа не гаснет» — являет­ся показателем ложности имплика­ции.

Истинность импликации объяс­няется следующим образом. В 1-й строке истинность р имплицирует

истинность q, или другими словами. если предохранитель плавится, то электролампа обязательно гаснет в силу их последовательного включения в электрическую цепь.

В 3-й строке при ложном антецеденте — «Предохранитель не плавится» консеквент является истинным — «Электролампа гас­нет». Ситуация вполне допустимая, ибо предохранитель может не плавиться, а электролампа может погаснуть в силу других причин — отсутствия тока в цепи, перегорания нити в лампе и т.д. Таким образом, истинность q при ложности р не опровергает идею о наличии условной зависимости между ними, поскольку при истинности р всегда будет истинным и q.

В 4-й строке при ложном антецеденте — «Предохранитель не плавится» ложным является и консеквент — «Электролампа не гас­нет». Такая ситуация возможна, но она не ставит под сомнение факт условной зависимости р и q, ибо при истинности р всегда будет истинным q.

4. Эквивалентные суждения (двойная импликация). Эквивалентным называют суждение, включающее в качестве составных два суждения, связанных двойной (прямой и обратной) условной зависимостью, выражаемой логической связкой «если и только если..., то...».

Вопрос 20

Сложные суждения

Сложные суждения также могут быть сравнимыми и несравни­мыми.

Несравнимые — это суждения, которые не имеют общих пропо­зициональных переменных. Например, р ^ q и m ^ n.

Сравнимые — это суждения, которые имеют одинаковые пропозиционные переменные (составляющие) и различаются логически­ми связками, включая отрицание.

Сложные сравнимые суждения могут быть совместимыми и не­совместимыми.

Отношение совместимости.

К совместимым относятся такие сравнимые суждения, кото­рые одновременно могут быть истинными. Как и в случае простых суждений, различают три вида совместимости сложных суждений:

эквивалентность, частичная совместимость и подчинение.

1. Эквивалентные — это суждения, которые принимают одни и те значения, т.е. одновременно являются либо истинными, либо ложными.

2. Частичная совместимость характерна для суждений, кото­рые могут быть одновременно истинными, но не могут быть одно­временно ложными.

3. Подчинение между суждениями имеет место в том случае, когда при истинности подчиняющего подчиненное всегда будет истинным.

Отношение несовместимости.

Несовместимыми являются суждения, которые одновременно не могут быть истинными. Из двух видов несовместимости одна — противоположность, другая — противоречие.

Противоположность — отношение между суждениями, кото­рые одновременно не могут быть истинными, но могут быть одно­временно ложными.

2. Противоречие — отношение между суждениями, которые одновременно не могут быть ни истинными, ни ложными. При истинности одного из них другое будет ложным, а при ложности первого второе будет истинным.

Вопрос 21

большую часть знаний мы получаем путем выведения новых знаний из знаний уже имеющихся. Эти знания называются опосредствованными, или выводными.

Логической формой получения выводных знаний является умо­заключение.

Умозаключение — это форма мышления, посредством кото­рой из одного или нескольких суждений выводится новое суждение.

Любое умозаключение состоит из посылок, заключения и вывода. Посылками умозаключения называют исходные суждения, из кото­рых выводится новое суждение. Заключением называется новое суждение, полученное логическим путем из посылок. Логический переход от посылок к заключению называется выводом.

При анализе умозаключения посылки и заключение принято за­писывать отдельно, располагая их друг под другом. Заключение за­писывают под горизонтальной чертой, отделяющей его от посылок и обозначающей логическое следование.

Умозаключения делятся на следующие виды.

1. В зависимости от строгости правил вывода различают демон­стративные (необходимые) и недемонстративные (правдоподоб­ные) умозаключения. Демонстративные умозаключения характери­зуются тем, что заключение в них с необходимостью следует из посылок, т.е. логическое следование в такого рода выводах представ­ляет собой логический закон. В недемонстративных умозаключени­ях правила вывода обеспечивают лишь вероятностное следование заключения из посылок.

2. Важное значение имеет классификация умозаключений по на­правленности логического следования. С этой точки зрения различают три вида умозаключений: дедуктивные (от общего знания к частному), индук­тивные (от частного знания к общему), умозаключения по аналогии (от частного знания к частному).

Дедуктивными называ­ется умозаключение, в котором переход от общего знания к част­ному является логически необходимым.

Вопрос 22

Непосредственные умозаключения

1. Превращение.

Преобразование суждения в суждение, противоположное по ка­честву с предикатом, противоречащим предикату исходного суж­дения, называется превращением.

Превращать можно общеутвердительные, общеотрицательные, частноутвердительные и частноотрицательные суждения.

Общеутвердительное суждение (А) превращается в общеотри­цательное (Е).

Схема превращения суждения А:

Все S суть Р Ни одно S не есть не-Р

Общеотрицательное суждение (Е) превращается в общеутвер­дительное (А).

Схема превращения суждения Е:

Ни одно S не есть Р Все S суть не-Р

Частноутвердительное суждение (I) превращается в частно-отрицательное (О).

Схема превращения суждения I:

Некоторые S суть Р Некоторые S не суть не-Р

Частноотрицательное суждение (О) превращается в частно-утвердительное (I).

Схема превращения суждения О:

Некоторые S не суть Р Некоторые S суть не-Р

Таким образом, чтобы превратить суждение, нужно заменить его связку на противоположную, а предикат — на понятие, противоре­чащее предикату исходного суждения. Суждение, полученное по­средством превращения, сохраняет количество, но изменяет качест­во исходного суждения. Субъект исходного суждения не изменяется.

2. Обращение.

Преобразование суждения, в результате которого субъект ис­ходного суждения становится предикатом, а предикат — субъек­том заключения, называется обращением.

3. Противопоставление предикату.

Преобразование суждения, в результате которого субъектом становится понятие, противоречащее предикату, а предика­том — субъект исходного суждения, называется противопостав­лением предикату.

Значение умозаключений посредством противопоставления пре­дикату состоит в том, что в них выясняется отношение предметов, не входящих в объём предиката, к предметам, отражённым субъектом исходного суждения. Устанавливая отношения между этими предметами, мы уточняем наши знания, высказываем нечто новое, что не было в явной форме выражено в исходном суждении.

Вопрос 23

§ 4. Умозаключения из суждений с отношениями

Умозаключение, посылки и заключение которого являются суж­дениями с отношениями, называется умозаключением с отноше­ниями.

Посылки и заключение в приведенном примере — суждения с отношениями, имеющие логическую структуру xRy.

Логическим основанием умозаключений из суждений с отноше­ниями являются свойства отношений, важнейшие из которых — 1) симметричность, 2) рефлексивность и 3) транзитивность.

1.Отношение называется симметричным, если перестанов­ка членов отношения не ведет к изменению вида отношения.  Отношение симметричности символически записывается: xRy -> yRx.

2.Отношение называется рефлексивным, если каждый член отношения находится в таком же отношении к самому себе. Отношение рефлексивности записывается: xRy -> xRx л yRy.

3. Отношение называется транзитивным, тогда и только тогда, когда из отношения между х и у и между у и z следует такое же отношение между х и z. Отношение транзитивности записывается: (xRy л yRz) -> xRz.

Для получения достоверных заключений из суждений с отноше­ниями необходимо опираться на правила, вытекающие из свойств отношений.

Из свойства симметричности (xRy—>yRx) вытекает правило: если суждение xRy истинно, то суждение yRx тоже истинно. Например:

А подобно В

В подобно А

Из свойства рефлексивности (xRy-»xRx ^ yRy) вытекает прави­ло: если суждение xRy истинно, то истинными будут суждения xRx и yRy. Например:

а=B

а =а иЬ= b

Из свойства транзитивности (xRy ^ yRz->xRz) вытекает правило:

если суждение xRy истинно и суждение yRz истинно, то суждение xRz также истинно. Например:

К. был на месте происшествия раньше Л.

Л. был на месте происшествия раньше М.

К. был на месте происшествия раньше М.

Таким образом, истинность заключения из суждений с отноше­ниями зависит от свойств отношений и регулируется правилами, вытекающими из этих свойств. В противном случае заключение может оказаться ложным.

Вопрос 24

§3. Простой категорический силлогизм Состав простого категорического силлогизма

Широко распространенным видом опосредствованных умозак­лючений является простой категорический силлогизм, заключение в котором получается из двух категорических суждений. Простой категорический силлогизм состоит из трех категорических суждений, два из которых являются посылками, а третье — заключением.

В отличие от терминов суждения — субъекта (S) и предиката (P) — понятия, входящие в состав силлогизма, называют термина­ми силлогизма. Различают меньший, больший и средний термины.

Меньшим термином силлогизма называется понятие, которое в заключении является субъектом. Большим термином силлогизма называется понятие, ко­торое в заключении является предикатом. Меньший и больший термины называются крайними и обозна­чаются соответственно латинскими буквами S (меньший термин) и Р (больший термин).

Каждый из крайних терминов входит не только в заключение, но и в одну из посылок. Посылка, в которую входит меньший термин, называется меньшей посылкой, посылка, в которую входит больший термин, называется большей посылкой.

Для удобства анализа силлогизма посьшки принято располагать в определенной последовательности: большую — на первом месте, меньшую — на втором. Под чертой записывают заключение:

Обвиняемый имеет право на защиту Гусев — обвиняемый

Гусев имеет право на защиту

Однако в рассуждении такой порядок необязателен. Меньшая посылка может находиться на первом месте, большая — на втором. Иногда посылки стоят после заключения.

Посылки различаются не их местом в силлогизме, а входящими в них терминами.

Вывод в силлогизме был бы невозможен, если бы в нем не было среднего термина. Средним термином силлогизма называется по­нятие, входящее в обе посылки и отсутствующее в заключении. Средний термин обозначается латинской буквой М.

Поставив в нашем примере на место терминов суждения терми­ны силлогизма, получим:

Обвиняемый (М) имеет право на защиту (Р)

Гусев (S) — обвиняемый (М)

Гусев (S) имеет право на защиту (Р)

Итак, простой категорический силлогизм — это умозаключе­ние об отношении двух крайних терминов на основании их отноше­ния к среднему термину.

Правомерность вывода, т.е. логического перехода от посылок к заключению, в категорическом силлогизме основывается на положе­нии (аксиоме силлогизма): все, что утверждается или отрицает­ся относительно всех предметов некоторого класса, утверждает­ся или отрицается относительно каждого предмета и любой части предметов этого класса.

Страница 23 из 63« Первая...10...2122232425...304050...Последняя »