Archive > июня 2012

52. Учение В. И. Вернадского о биосфере

Сущность учения В. И. Вернадского заключена в признании исключительной роли «живого вещества», преобразующего облик планеты. Суммарный результат его деятельности за геологический период времени огромен. По словам Вернадского, «на земной поверхности нет химической силы более постоянно действующей, а потому более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом». Именно живые организмы улавливают и преобразуют энергию Солнца и создают бесконечное разнообразие нашего мира.

Вторым главнейшим аспектом учения В. И. Вернадского является разработанное им представление об организованности биосферы, которая проявляется в согласованном взаимодействии живого и неживого, взаимной приспособляемости организма и среды. «Организм, - писал В. И. Вернадский, - имеет дело со средой, к которой он не только приспособлен, но которая приспособлена к нему».

Это взаимодействие сказывается прежде всего в создании многочисленных новых видов культурных растений и домашних животных. Такие виды не существовали раньше и без помощи человека либо погибают, либо превращаются в дикие породы. Поэтому Вернадский рассматривает геохимическую работу живого вещества в неразрывной связи животного, растительного царства и культурного человечества как работу единого целого.

В. И. Вернадский высказывает предположение, что живое вещество, возможно, имеет и свой процесс эволюции, проявляющийся в изменении с ходом геологического времени, вне зависимости от изменения среды.

Для подтверждения своей мысли он ссылается на непрерывный рост центральной нервной системы животных и ее значение в биосфере, а также на особую организованность самой биосферы. По его мнению, в упрощенной модели эту организованность можно выразить так, что ни одна из точек биосферы "не попадает в то же место, в ту же точку биосферы, в какой когда-нибудь была раньше”. В современных терминах это явление можно описать как необратимость изменений, которые присущи любому процессу эволюции и развития.

Непрерывный процесс эволюции, сопровождающийся появлением новых видов организмов, оказывает воздействие на всю биосферу в целом, в том числе и на природные биокосные тела, например, почвы, наземные и подземные воды и т. д. Это подтверждается тем, что почвы и реки девона совсем другие, чем третичной и тем более нашей эпохи. Таким образом, эволюция видов постепенно распространяется и переходит на всю биосферу.

В. И. Вернадский обосновал также важнейшие представления о формах превращения вещества, путях биогенной миграции атомов, т. е. миграции химических элементов при участии живого вещества, накоплении химических элементов, о движущих факторах развития биосферы и др.

53. Методы очистки промышленных и бытовых сточных вод

Виды сточных вод. Сточные воды, отводимые с территории промышленных предприятий, по своему составу могут быть разделены на 3 вида:

1. производственные – использованные в технологическом процессе производства или получающиеся при добычи полезных ископаемых.

2. бытовые – от санитарных узлов производственных и не производственных корпусов и зданий, а также от душевых установок, имеющихся на территории, промышленных предприятий.

3. атмосферные – дождевые и оттаивание снега.

Производственные сточные воды делятся на 2 две основные категории:

– загрязнённые

– незагрязненные (условно чистые)

Загрязненные производственные сточные воды содержат различные примеси и подразделяются на 3 группы:

1. загрязнённые преимущественно минеральными примесями (предприятия металлургической, машиностроительной, угледобывающей промышленности)

2. загрязнённые преимущественно органическими примесями (предприятия рыбной, мясной, молочной, пищевой, целлюлозно-бумажной промышленности)

3. загрязнённые минеральными неорганическими примесями (предприятия нефтедобывающей, нефтеперерабатывающей, текстильной, лёгкой промышленности)

Машиностроительные заводы характеризуются наличием ряда водоёмких производственных процессов, а следовательно, и образованием значительного количества, производственных сточных вод, которые в основном загрязняются отходами травильных и гальванических цехов и нефтепродуктами.

В гальванических цехах детали из металлов и сплавов подвергаются различным видам химической или электрохимической обработки. В начале поверхность изделий подвергается предварительной обработки: обезжириванию и травлению с применением различных растворов кислот, щелочей, солей металлов. Отработанные растворы травильных ванн образуют кислые и щелочные сточные воды. В каждом травильном отделение существует 2 вида сточных вод: концентрированные и разбавленные. Разбавленные являются промывными водами.

Методы очистки сточных вод.

Механические методы применяются как первая стадия в общей схеме очистки сточных вод. Выбор механического метода очистки осуществляется с учётом размера взвешенных частиц. Механическая очистка состоит из:

1. процеживания через решётки

2. пескоулавливания

3. отстаивание

4. фильтрование

5. центрифугирование

Химические методы обработки сточных вод основаны на применение химических реакций. В результате которых загрязнения превращаются в соединения безопаснее для потребителя или легко выделяются в виде осадков. В особую группу химических методов следует выделить хлорирование и озонирование сточных вод, содержащих органические примеси, а также цианиды и другие пахнущие не органические вещества. Хлорирование и озонирование наиболее часто применяют для доочистки и обезвреживания питьевой воды на городских водопроводных станция.

1. осаждение

2. окисление-востановление

Физико-химические методы. В большинстве случаев использование физико-химических методов выделения загрязняющих веществ из сточных вод позволяет в дальнейшем рекуперацию.

1. флотация

2. коагуляция

3. ионный обмен

4. сорбция

5. электрохимические методы

6. магнитная обработка

7. экстракция

Биологическая очистка. Биологическое окисление осуществляется сообществом микроорганизмов, включающим множество различных бактерий, простейших и ряд более высокоорганизованных организмов, связанных между собой единый комплекс сложными взаимоотношениями. Главенствующая роль в том сообществе принадлежит бактериям.

1. аэробный

2. анаэробный

При термической очистке сжигают жидки отходы нефтепродуктов и других горючих веществ в печах и горелках.

1. огневое концентрирование

2. огневое обезвреживание

54. Механические методы очистки сточных вод. Коагуляция, седиментация, центрифугирование

1. Механические методы очистки поверхностных сточных вод

Общим признаком данной группы методов очистки является то, что в их основе лежит гравитационная сепарация нефтепродуктов, взвесей и воды.

Механическая очистка является самым распространенным методом обработки воды, содержащей нефтепродукты и взвеси. В процессе механической очистки из сточных вод удаляются крупные загрязнения и крупнодисперсные примеси, находящиеся как в твердом, так и в жидком состоянии (в т. ч. нефтепродукты).

К сооружениям механической очистки следует отнести песколовки, нефтеловушки, отстойники, пруды накопители, гидроциклоны и центрифуги.

В процессе механической очистки из обрабатываемой воды удаляются загрязнения, имеющие крупность более 60 мкм.

Седиментация – оседание под действием гравитационного поля. Применяют коагулянты, для увеличения скорости осаждения взвесей, флокулянты – водорастворимые полимеры с полярными концевыми функциональными группами. Они связывают взвеси в рыхлые сетчатые агрегаты. Полиакриламид – (ПАА) – [CH4-CH-(C=O)-NH]n. Процесс идет в флокуляторе при равномерном и медленном перемешивании (без дробления частиц) ПАА добавляют 0.1% от содержания твердой фазы. Применяют в основном для сгущения очищаемой среды и первичного выделения осадков. Отстойник периодического действия, отстойник непрерывного действия, вертикальные отстойники, горизонтальные, радиальный отстойник, тонкослойные отстойники (для тонкодисперсных примесей).

Центрифугирование – разделение твердых и жидких фаз в поле центробежных сил. Центрифуги и гидроциклоны. Центрифуги – ускорение оседающей части по сравнению с гравитационным ускорением увеличивается на величину a = w2r/g, где w – угловая скорость вращения жидкости, r – радиус вращения. Уравнение движения V=(gLdr2)(pф – pс))/18m, где L – центробежная сила, dr – диаметр частицы, рф и рс – плотность дисперсной фазы и среды, m – вязкость среды. Улучшение в результате агрегации и фильтрации (укрупнение частиц). Циклоны: * напорные – цилиндрическая и коническая части. Вращение жидкости вызывается ее выпуском в тангенциальный патрубок, расположенный в верхней части цилиндра. Коническая часть кончается насадкой через которую выводится осадок. Низкий КПД из-за избыточной интенсивности турбулентности. Применяют для выделения частиц со скоростью осаждения менее 0.02 м/с. * Многоярусные: по принципу выделения аналогичны напорным. Устройство в камере нескольких секций, через которое проходит очищаемый поток, позволяет более полно использовать объем гидроциклона и уменьшить время пребывания жидкости в циклоне. * Открытые – для очистки от частиц со скоростью оседания более 0.02 м/с. большая производительность и малые потери напора.

Седимента? ция — направленное движение частиц в поле действия гравитации или центробежных сил. Скорость седиментации зависит от массы, размера и формы частицы, вязкости и плотности среды, а также от ускорения силы тяжести и действующих на частиц центробежных сил. В поле гравитационных сил седиментируют частицы грубодисперсных систем; в поле центробежных сил возможна седиментация коллоидных частиц и макромолекул (см. центрифугирование). Седиментацию используют в промышленности при обогащении полезных ископаемых, различных продуктов химической и нефтехимической технологии, при водоочистке и др. Седиментация в центрифугах и ультрацентрифугах, а также в гравитационном поле лежит в основе седиментационного анализа.

55. Электрофорез и электроосмос при очистке сточных вод

Электрофорез – процесс переноса частиц в электрическом поле. Причина – наличие разноименных зарядов у разных фаз. В результате возникновения электрического поля м/у электродами, благодаря малым размерам частиц дисперсной фазы происходит перенос отрицательно заряженной дисперсной фазы к положительному электроду. Заряд на частицах обусловлен наличием на их поверхности двойного электрического слоя из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, либо за счет ионизации поверхностных молекул вещества.

Электроосмос – процесс переноса жидкости при приложении разности потенциалов ч/з пористую перегородку. Под влиянием электростатического поля по капиллярам перегородки к отрицательно заряженному электроду передвигается положительно заряженная жидкость.

При электрофлотации на катоде и аноде образуются пузырьки водорода и кислорода, которые оказывают флотационное действие. Прилипая к частицам дисперсной фазы, поднимают их на поверхность.

Фильтрование – пропускание воды через слой различного зернистого материала или через сетчатые барабанные фильтры и микрофильтры, через высокопроизводительные напорные фильтры и фильтры с плавающей загрузкой – пенополиуретановой или пенополистирольной.

56. Коагуляция. Флотация при очистке сточных вод. Флокуляция

Коагуляция – способность дисперсных систем выделяться на растворе под влиянием внешних воздействий. Вещества, обуславливающие коагуляцию называются коагулянтами. Центробежное отделение твердой фазы под действием центробежных и центростремительных сил происходит таких аппаратах, как центрифуги и гидроциклоны.

Применяется для очистки стоков от мелкодисперсных и коллоидных примесей.

Al+3 +H2O = Al(OH)2+ + H+

Al(OH)2+ + H2O = Al(OH)2+2 + H+

Al(OH)2+ + H2O = Al(OH)+3 + H+

Флотация - относится к физико-химическим методам очистки, процесс молекулярного прилипания частиц флотируемого материала к поверхности раздела двух фаз, обычного газа и жидкости, обусловленный избытком свободной энергии поверхностных пограничных слоев, а также поверхностными явлениями смачивания. Процесс очистки сточных вод, содержащих нефть, нефтепродукты, масла, волокнистые материалы заключается в образовании комплексов «частици-пузырьки», всплывание этих комплексов, удаление образовавшегося пенного слоя с поверхности жидкости. Необходимо не смачивание или плохое смачивание частиц жидкостью. Способность жидкости к смачиванию является величина поверхностного натяжения ее по границе. Метод пенной флотации применяют для извлечения нерастворенных и частичного снижения концентрации некоторых растворенных веществ. Способы флотационной обработки: флотация с выделением воздуха раствора; с механическим диспергированием воздуха; с подачей воздуха через пористые материал; электрофлотация; биохимическая и химическая флотация.

Флокуляция, вид коагуляции, при которой мелкие частицы, находящиеся во взвешенном состоянии в жидкой или газовой среде, образуют рыхлые хлопьевидные скопления, т. н. флокулы. Флокуляция. в жидких дисперсных системах (золях, суспензиях, эмульсиях, латексах) происходит под влиянием специально добавляемых веществ = флокулянтов, а также при тепловых, механических, электрических и пр. воздействиях. Эффективные флокулянты это растворимые полимеры, особенно полиэлектролиты. Действие полимерных флокулянтов обычно объясняют адсорбцией нитевидных макромолекул одновременно на различных частицах. Возникающие при этом агрегаты образуют хлопья, которые могут быть легко удалены отстаиванием или фильтрованием. Флокулянты (поликремниевая кислота, полиакриламид и др.) широко используются при подготовке воды для технических и бытовых нужд, обогащении полезных ископаемых, в бумажном производстве, в сельском хозяйстве (для улучшения структуры почв), в процессах выделения ценных продуктов из производственных отходов, обезвреживания промышленных сточных вод. При водоочистке полимерные флокулянты применяют обычно в концентрации 0,1=5 мг/л. Флокуляция. под действием органических веществ в природных водоёмах = важный фактор их самоочищения.

57. Электрохимическая очистка сточных вод

Электролиз, при котором имеет место направленное движение ионов и заряженных дисперсных частиц и протекание реакций окисления на аноде и восстановления на катоде.

Электрофлотация - удаление твердых частиц дисперсной фазы осуществляется путем флотации их пузырьками водорода и кислорода, образующихся в результате электролиза водной части осветляемой жидкости. Катод 2H2O + 2e -> H2 + 2OH-. OH - ионы движутся в аноду, где отдают свой заряд с выделением O2. 4OH– 4e ->2H2O + O2.

По сравнению с обычной флотацией пузырьки по размерам на 1 – 2 порядка меньше. Пузырьки – однородны и выделяются в больших количествах.

Электрофорез – процесс переноса частиц в электрическом поле. Причина – наличие разноименных зарядов у разных фаз. В результате возникновения электрического поля м/у электродами, благодаря малым размерам частиц дисперсной фазы происходит перенос отрицательно заряженной дисперсной фазы к положительному электроду. Заряд на частицах обусловлен наличием на их поверхности двойного электрического слоя из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, либо за счет ионизации поверхностных молекул вещества.

Электрокоагуляция – в процессе анодного растворения образуются коагулянты – гидроксиды металлов, которые снимают, поверхностный заряд частиц под воздействием электрического поля.

Fe0 – e + H2O -> Fe(OH) + H+

Fe(OH) – e + H2O -> Fe(OH)2 + H+

58. Методы удаления шестивалентного хрома. Метод удаления из стоков цианидов. Методы удаления тяжелых металлов из сточных вод

В настоящее время известно большое количество способов очистки сточных вод от Cr(6+): электрохимические /1/, адсорбционные /2/, ионообменные /3/ и др.

Электрохимические методы являются энергоемкими и не обеспечивают полного извлечения Cr(6+) из растворов.

При использовании адсорбционных и ионообменных способов загрязняются сами сорбенты Cr(6+) - смолы, торф, уголь и прочие, - после чего требуются дополнительная очистка или их захоронение.

Недостатками этого способа являются:

- длительность процесса и использование агрессивных реагентов;

- дополнительное загрязнение сточных вод железом (2+; 3+);

- увеличение массы твердой фазы.

Существует множество методов обработки сточных вод с целью удаления ионов хрома: восстановление, ионный обмен, электролиз, электрохимическое осаждение, испарение, экстракция растворителем, обратный осмос, химическое осаждение и адсорбция. Недостатки большинства этих методов — высокие эксплуатационные затраты или необходимость удаления ила, загрязненного тяжелыми металлами. Много исследований направлено на получение дешевых адсорбирующих веществ наподобие активированного угля.

Преимущества адсорбции на оксиде железа Fe2O3 — сравнительно большая поглотительная способность, очень короткое адсорбционное время, легкое отделение от загрязняющей примеси.

В этом исследовании с целью удаления Cr(VI) из модельной сточной воды, содержащей хромовую кислоту или бихромат калия, использован гамма-Fe2O3.

Способ включает промывку исходных осадков, разделение путем уплотнения на сливную воду и уплотненный осадок, обработку его кислотой, разделение на твердую фазу (Ф) и жидкую Ф, содержащую ионы тяжелых металлов (ТМ), смешение жидкой Ф с нейтрализующим агентом и последующее разделение смеси на шлам, содержащий ТМ, и осветленную жидкую Ф, сливную воду используют в качестве нейтрализующего агента. Способ включает анаэробное сбраживание исходных осадков, промывку сброженных осадков водой, разделение путем уплотнения на сливную воду и уплотненный осадок, кислотную обработку осадка ведут в две ступени: на первой из которых уплотненный осадок смешивают с промывной водой и кислотой с последующим отделением кислой сливной воды от уплотненного кислого осадка, который на второй ступени аэрируют в присутствии ацидофильных микроорганизмов и/или смешивают с кислотой и окислителем, после чего обработанный осадок делят на твердую Ф и жидкую Ф, содержащую ионы ТМ, жидкую фазу смешивают с нейтрализующим агентом с последующим разделением смеси на шлам, содержащий ТМ и осветленную жидкую Ф, а при смешении жидкой Ф с нейтрализующим агентом вводят кислую сливную воду. Позволяет сократить расход щелочных реагентов, снизить расход кислотных реагентов, повысить степень удаления ТМ из твердой и жидкой Ф осадка, снизить нагрузку по взвешенным веществам и аммонийному азоту на очистные сооружения

59. Ионообменная очистка сточных вод

Ионообменный метод – это метод обмена ионами находящимися в растворе и ионами, присутствующими на поверхности твёрдой фазы (ионита). Очистка производственных сточных вод методами ионного обмена позволяет извлекать и утилизировать ценные примеси, ПАВ или радиоактивные вещества.

Важнейшим свойством ионитов является их подготовительная способность, так называемая обменная емкость. Полная ёмкость ионита – количество находящихся в сточной воде грамм-эквивалентов ионов, которое может поглотить 1 м3 ионита до полного насыщения.

Men+ + H[K] = Me[K] + nH+

Men+ + Na[K] = Me[K] + nNa+

Men+ - катион находящийся в сточной воде

К – сложный комплекс катионита

Характерной особенностью ионитов является их обратимость то есть возможность проведения реакции в обратном направление, что и лежит в основе их регенерации. Различают химическую, термохимическою, и электрохимическую регенерацию.

60. Биологическая очистка сточных вод

Большое влияние на биологическое окисление оказывает кислородный режим и наличие токсичных веществ в среде. Токсичное действие на биологические процессы могут оказывать органические и неорганические вещества. Биологическая очистка сточных вод может осущзествляться как в естественных условиях (поля орошения, поля фильтрации, биологические пруды), так и в специальных сооружениях (аэротенки, метантенки).

Использование бактерий для очистки вод.

Органические вещества + O2 + N + P?(микроорганизмы) + CO2 + H2 + биологически не окисляемые растворимые вещества.

Факторы влияющие на биологическую очистку:

- концентрация водородных ионов (pH)

- кислородный режим и наличие токсичных веществ в среде

Страница 33 из 123« Первая...1020...3132333435...405060...Последняя »