Author Archive > admin

32. Проблемные ситуации в науке. Перерастание частных задач в проблемы. Развитие оснований науки под влиянием новых теорий

Проблема — форма теоретического знания, содержанием которой является то, что еще не познано человеком, но что нужно познать. Проблема не есть застывшая форма зна­ния, а процесс постановку и решение. Правильное выведение про­блемного знания из предшествующих фактов и обобщений, умение верно поставить проблему — необходимая предпосылка ее успешного решения.

В. Гейзевберг отмечал, что при постановке и решении научных про­блем необходимо следующее: а) определенная система понятий, с по­мощью которых исследователь будет фиксировать те или иные фено­мены; б) система методов, избираемая с учетом целей исследования и характера решаемых проблем; в) опора на научные традиции, посколь­ку «в деле выбора проблемы традиция, ход исто­рического развития играют существенную роль», хотя, конечно, опре­деленное значение имеют интересы н наклонности самого ученого.

К. Поппер: наука начинает не с наблюдений, а имен­но с проблем, и ее развитие есть переход от одних проблем к дру­гим — от менее глубоких к более глубоким. Проблемы возникают: а) либо как следствие противоречия в отдельной теории; б) либо при столкновении двух различных теорий; в) либо в результа­те столкновения теории с наблюдениями. Для успешного решения любой научной проблемы два основных условия: а) ясное, четкое ее формулирование; б) критическое исследование различных ее решений.

Тем самым Научная проблема выражается в наличии противоре­чивой ситуации. Определяющее влия­ние на способ постановки и решения проблемы имеет 1) ха­рактер мышления эпохи, 2) уровень знания о тех объектах, которых касается возник­шая проблема.

Этап Проблемного осмысления, формулировки основной проблемы исследования опирается на использование уже имеющегося познавательного арсенала, т. е. теоретических конструктов, идеализации, абстрактных объектов, но учитывает новые факты и данные, которые могут расходиться с устоявшимся объемом знания. Вслед за осознанием проблемы для ее разрешения выдвигается гипотеза, которая оценивается как необходимое основание при создании теоретической модели.

Проблемные ситуации являются необходимым этапом развития научного познания и достаточно явно фиксируют Противоречие меж­ду старым и новым знанием, старое знание не может развивать­ся на своем прежнем основании, а нуждается в его детализации или замене. Проблемные ситуации предполагают особую концентрацию рефлексивного осмысления и рационального анализа, они указывают на недостаточность и ограниченность прежней стратегии научного ис­следования и культивируют эвристический поиск.

Проблемные ситу­ации свидетельствуют о столкновении программ исследования, под­вергают их сомнению, заставляют искать новые способы вписывания предметности в научный контекст.

Симптоматикой проблемных ситуаций в науке является возникновение множества контрпримеров, которые влекут за собой множество вопросов и рождают ощущение сомнения, неуверенности и неудовлетворенности наличным знанием. Результатом выхода из проблемных ситуаций является конституирование новых, рационально осмысленных форм организации теоретического знания.

Проблемные ситуации возникают, когда трудно установить спе­цифику функционирования теории в соотношении с ее эмпирическим базисом. В этом случае поиск причинно-следственных отношений яв­ляется основополагающим условием разрешения данной проблемной ситуации. Принцип причинности всегда занимает доминирующее ме­сто в научном исследовании.

Современная философия науки осознает в качестве глобальной проблемную ситуацию, связан­ную с заменой представлений о линейном детерминизме и принуди­тельной каузальности, нелинейной парадигмой, предполагающей квантово-механические эффекты, т. е. не элиминируемость случая, стоха­стические взаимодействия.

Другой, не менее масштабной проблемной ситуацией считается напряжение между рациональностью и сопровождающими ее внерациональными формами постижения действительности. Слепая вера в рациональность осталась в прошлом, как образец классического есте­ствознания.

В поле проблемных ситуаций «затянут» и столь прочный способ эмпирического исследования как эксперимент. Эксперимент считает­ся наиболее характерной чертой классической науки, однако он не мо­жет быть применен в языкознании, истории, астрономии и (по эти­ческим соображениям) в медицине. Таким образом, проблемные си­туации, фиксируя противоречие между теорией и фактом, старыми и новыми данными, универсальны и играют в научном исследовании роль пускового механизма.

33. Научные традиции, их структура и виды

Развитие науки совершается путем: диалектики, традиций, иноваторства. Кун впервые рассмотрел Традиции как основной конституирующий фактор развития науки. Любая Традиция (социально-политическая, культурная) всегда относится к прошлому, опирается на прежние достижения. Со сменой парадигмы начинается этап нормальной науки. На этом этапе ученый работает в жестких рамках парадигмы, традиции. Кун показал, что традиция не только не тормозит это развитие, но выступает в качестве его необходимого условия. Действуя по правилам парадигмы, ученый случайно наталкивается на факты, которые не объяснимы в рамках этой парадигмы. Возникает необходимость изменить правила.

Функции традиций: 1-определяет предмет исследования. 2-Контролируют общий ход научного поиска 3-Выступают образцами постановки экспериментов, осуществляют наблюдение. 4-Дают рекомендации по оформлению результатов исследования.

В структуре традиции выделяют 2 компонента: 1-Внешне регулятивные (Стиль мышления: Антология (что изучать?)-Гносеология (Как?)-Прогматика (Как обосновать?)); 2-Внутренний регулятив – парадигма (определяет конкретное соответствие научного знания). [1-внешне общие требования ко всем наукам данной эпохи; 2-внутр, специальные требования, вырабатывает которые наука]

Виды традиций:1.Вербализованные и невербализ традиции. 2-Частнонаучные и общенаучные (Соотв идеалам и нормам научного дискуса, стандартам частных дисциплин). 3.Традиции получения знания и традиции представления полученных результатов.

По способу существования можно выделить Вербализованные (существующие в виде текстов) и Невербализованные (не выразимые полностью в языке) традиции. Первые реализованы в виде текстов монографий и учебников. Вторые не имеют текстовой формы и относятся к типу неявного знания. Неявные знания передаются на уровне образцов от учителя к ученику, от одного поколения ученых к другому. Выделяет два Типа образцов в науке: а) образцы действия и б) образцы-продукты. Образцы действия предполагают возможность продемонстрировать технологию производства предмета. Такая демонстрация легко осуществима по отношению к артефактам (сделанные руками человека предметы и процессы). Можно показать, как делают нож. Но показать технологию «производства» аксиом, дать «рецепт» построения удачных классификаций еще никому не удалось. Дело в том, что аксиомы, классификации — это некие образцы продуктов, в которых глубоко скрыты схемы действия, с помощью которых они получены.

Признание того факта, что научная традиция включает в себя наряду с явным также и неявное знание, позволяет сделать вывод: Научная парадигма — это не замкнутая сфера норм и предписаний научной деятельности, а открытая система, включающая образцы неявного знания, почерпнутого не только из сферы научной деятельности, но из других сфер жизнедеятельности ученого. Достаточно вспомнить о том, что многие ученые в своем творчестве испытали влияние музыки, художественных произведений, религиозно-мистического опыта и т. д. Следовательно, ученый работает не в жестких рамках стерильной куновской парадигмы, а подвержен влиянию всей культуры, что позволяет говорить о многообразии научных традиций.

Каждая научная традиция имеет свою Сферу применения и распространения. Поэтому можно выделять традиции Специально-научные и общенаучные. Но проводить резкую грань между ними трудно. Дело в том, что специально-научные традиции, на которых базируется та или иная конкретная наука, например, физика, химия, биология и т. д., могут одновременно выступать и в функции общенаучной традиции. Это происходит в том случае, когда методы одной науки применяются для построения теорий других наук.

Говоря о традициях необходимо Учесть их неоднородность. Например, в науке под традициями и их движением в сторону прогресса принимают преемственность знаний. В культуре – стиль и мастерство. В традициях как правило присутствует как прогрессивное, так и регрессивное.

Более сложно Неоднородность выглядит, когда говорят о первичных традициях и вторичных. Следование первичным традициям ведет к экстенсивному развитию (количеству). Первичные традиции – при смене парадигм. Вторичные традиции особенно активны при объяснении науки и культуры, признаки: - устанавливается не абсолютный, а относительный характер каждой парадигмы. Изменчивость традиции, их смену объясняет процесс накопления новых научных результатов. - смена исторической эпохи. Главное во вторичных традициях состоит в том, что они открывают интенсивный путь развития. Интенсивный – путь качественных преобразований.

34. Взаимодействие традиций и возникновение нового знания в науке

Всякая научная деятельность сочетает в себе черты новации и традиции. Впервые на теоретическом уровне проблемы их соотношения были осмыслены Куном. Он показал значение традиций для развития науки и способах формирования новаций на основе этих традиций. Традиции В науке выступают в форме парадигм, стиля мышления, образцов проведения научных изысканий и оформления их результатов. Традиционная основа науки исследования имеет целью подвести ученого к открытию чего-то нового, т. е. к новации. Новация (в самом широком смысле) - это все то, что возникло впервые, чего не было раньше.

Виды новации: 1)Преднамеренные (выступают в форме непознанного и формулируются в явном виде как вопрос или проблема) и Случайные (не осознаются и не формулируются, выступая как соприкосновение с неведомым и достигаются как побочный результат работы в рамках традиций).

2)Базисные (изменяют «жесткое ядро» теории, создавая новые услуги) и Модифицирующие (Трансформируют ее защитный пояс).

3)Открытие новых методов (наблюдение в подзорную трубу или микроскоп, спектральный анализ, гипотетико-дедукт метод) и Новых миров (Микромир, Америка, клетки, атомов, гипер-урания).

4)По форме выражения: *Обнаружение - столкновение с непознанным, но существующем до этого моменты (открытие Америки). *Открытие - соприкосновение с неведомым, которое начинает существовать только после этого открытия (Мир идей Платона, фонемы, шар). *Изобретения - оригинальное и практически полезное решение технических задач.

5 способов создания новаций в науке:

1) Концепция «пришельцев» в простейшем случае выглядит так: в данную науку приходит человек из другой области, человек, не связанный традициями этой науки, и делает то, что никак не могли сделать другие. Это изменение ученым сферы научное деятельности, в которую он приносит образцы, установки, методы своей прежней специализации. Недостаток: «пришелец» здесь – это просто свобода от каких-либо традиций, он определён чисто отрицательно, тем, что не связан никакой догмой. Второй случай – учёный из одной области знаний, владевший экспериментальным методом, входит в новую для него область знания с новыми методами и приёмами работы и видит в ней то, чего не видели в ней ранее её изучавшие наблюдатели.

2) Явление монтажа - это новая комбинация из уже известных теорий, методов, установок (пегас).

3) Получение побочного результата. Ученый желает получить одно, но вдруг получает другое. Исследователь занят совсем другими вещами, но среди условий его работы оказывается налицо, между прочим, такие условия, которые вызывают новые явления. Случайности этого рода встречаются гораздо чаще, чем об этом может поведать нам история, ибо в большинстве случаев такие явления или вовсе не замечаются, или если и замечаются, то не подвергаются научному исследованию. Агносимия – хотели получить философский камень, а получая его открыли яды, красители.

4) Метод метафор. Это перенос образцов решения проблем из одной отрасли знания в другую. Не метод строился здесь под задачу, а наоборот, наличие метода требовало поиска соответствующих задач. Побочные результаты, полученные в рамках одной традиции, подхватываются другой, которая точно стоит на страже.

5)Метафизические переносы (сначала экология - только природа, теперь - любая окр. среда: города, семьи и др.) – экстраполяция терминологического аппарата, методов, установок с одной сферы знания на др.).

Этапы развития научной новации. 1-Этап выдвижения новации. Это наиболее таинств фаза научного процесса, которая чаще всего объясняется 3 способами: *гносеологический стимул (для развития чего-либо важно решить проблему). *психологический стимул (слова), *социальный стимул (деньги).

2-Пролифирация – разрастание организма: работа по оптимизации новации в рамках эпистомологической ниши, без предъявления ее научной общности.

3-Легимация – предъявление новации научному сообществу (как результат традиций).

4-Концептуализации – новации уже не полагается как результат традиции, которая является ее закономерным следствием, а начинает противопоставляться ей оформляясь в виде конструирующего с традицией системы знания.

5-Корреспонденции – новации и традиции определяют границы друг друга и делят проблемное поле науки.

6-Кононизации – новации воспринимаются как традиции признаются в качестве таковой всем научным сообществом.

35. Научные революции и перестройка оснований науки. Понятие научной парадигмы, пути её перестройки

В динамике научного знания особую роль играют этапы развития, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки. Эти этапы получили название Научных революций. Перестройка оснований науки, сопровождающаяся научными революциями, может явиться, во-первых, результатом Внутридисциплинарного развития, в ходе которого возникают проблемы, неразрешимые в рамках данной научной дисциплины. Во-вторых, научные революции возможны благодаря Междисциплинарным взаимодействиям, основанным на переносе идеалов и норм исследования из одной научной дисциплины в другую, что приводит часто к открытию явлений и законов, которые до этой «парадигмальной прививки» не попадали в сферу научного поиска.

Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учтены в картине мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования. Но по мере развития науки она может столкнуться с принципиально новыми типами объектов, требующими иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. В зависимости от того, какой компонент основания науки перестраивается, различают две Разновидности научной революции: а) идеалы и нормы научного исследования остаются неизменными, а картина мира пересматривается; б) одновременно с картиной мира радикально меняются не только идеалы и нормы науки, но и ее философские основания.

В истории науки можно обнаружить образцы обеих ситуаций интенсивного роста знаний: 1) переход от механической к электродинамической картине мира, осуществленный в физике последней четверти XIX столетия в связи с построением классической теории электромагнитного поля. Этот переход, хотя и сопровождался довольно радикальной перестройкой видения физической реальности, существенно не менял познавательных установок классической физики (сохранилось понимание объяснения как поиска субстанциональных оснований объясняемых явлений и жестко детерминированных связей между явлениями; из принципов объяснения и обоснования элиминировались любые указания на средства наблюдения и операциональные структуры, посредством которых выявляется сущность исследуемых объектов, и т. д.). 2)история квантово-релятивистской физики, характеризовавшаяся перестройкой классических идеалов объяснения, описания, обоснования и организации знаний.

Научная революция - новации, которые: 1) связаны не с отдельными теориями, а с перестроением оснований науки; 2) имеют мировоззренческое значение и приводят к изменению стиля мышления; 3) во время революции происходит взаимодействие традиций и новаций внутренних и внешних факторов.

Парадигма – это система норм, теории, методов, фундаментальных фактов и образцов деятельности, которые признаются и разделяются всеми членами данного научного сообщества как логического субъекта научной деятельности. Она выполняет две функции – запретительную и проективную. С одной стороны, она запрещает все, что не относится к данной парадигме и не согласуется с ней, с другой – стимулирует исследования в определенном направлении.

Научная революция наступает, когда создаются новые парадигмы, оспаривающие первенство друг у друга. Они создаются, как правило, учеными-аутсайдерами, стоящими вне "школы", и их активной деятельностью по пропаганде своих идей. Процесс научной революции оказывается у Куна процессом скачкообразного отбора посредством конфликта научных сообществ, сплоченных единым "взглядом на мир". Кризис разрешается победой одной из парадигм, что знаменует начало нового "нормального" периода, создается новое научное сообщество ученых с новым видением мира, новой парадигмой.

Сущность научных революций, по Куну, заключается в возникновении новых парадигм, полностью несовместимых и несоизмеримых с прежними. Он стремится подтвердить это ссылкой на якобы несоизмеримость квантовой и классической механики. При переходе к новой парадигме, по мнению Куна, ученый как бы переселяется в другой мир, в котором действует и новая система чувственного восприятия (например, там где схоласты видели груз, раскачивающийся на цепочке, Галилей увидел маятник). Одновременно с этим возникает и новый язык, несоизмеримый с прежним (например, понятие массы и длинны в классической механике и СТО Эйнштейна).

Классификация научных революций:

1) по содержанию новаций: 1.1) внедрение новых методов - появление новых фундаментальных теорий является самой очевидной причиной научных революций. Фундаментальные теории нацелены на разработку основопологающих научных принципов и связаны с решением мировоззренческих проблем; 1.2) построение новых теорий - стимулируют появление новых проблем, стандартов исследования или новых областей применения; 1.3) открытие новых миров - применяется весь арсенал накопленных средств, которые адаптируются к реальности и приводят к появлению новых дисциплин.

2) по сфере возникновения новизны: 2.1) внутрипарадигмальные - новые методы, идеи и философские предпосылки изменения основания науки. Парадоксы разрешаются путем построения принципиально новых теорий. Выработка методов и идеи - длительный процесс, в начальной стадии не вступающий в оппозицию к прежнему стилю мышления, а создавая почву для идеи, которые постепенно укореняются в мировоззрении для принятия новой научной парадигмы; 2.2) межпарадигмальные - представления одной парадигмы переносятся в другую. При таком переносе становится очевидным противоречие между картиной мира (КМ) и спецификой новаций (формируется общая КМ).

3) по отношению к науке: 3.1) внутренние - связанные с развитием самой науки (1.1-1.3, 2.1-2.2); 3.2) внешние.

В кризисном состоянии прежний закономерный эволюционный путь развития системы разветвляется на несколько дискретных переходов в качественно новые состояния. Такое ветвление получило название точки бифуркации. В этой точке возникают многочисленные флуктуации, и одна из них случайным образом толкает систему к «выбору» одного из возможных продолжений пути. Но возврата назад не существует, и после перехода стартует новый эволюционный этап развития вплоть до следующей точки бифуркации.

Существование точек бифуркации имеет следствия, важные для понимания особенностей развития в нашем Мире. Прежде всего, возникает новое понимание соотношения случайного и закономерного в развитии. Случайным оказывается только то, что происходит в критической ситуации, сопровождаемой переходом системы в качественно новое состояние. Далее, разветвление путей развития и случайность «выбора» продолжения делает невозможным точное предсказание будущего системы на основании существовавших до перехода тенденций развития. Наконец, весь процесс развития есть движение системы от одной точки бифуркации до следующей, процесс, в котором только между точками бифуркации существуют относительно стабильные условия ее существования.

С позиции синергетики научные революции можно истолковать как "точки бифуркации" развития науки и культуры. Научные революции связаны с выбором между альтернативами и с поворотом, коренным изменением в научной картине мира. В предреволюционный, критический период, как правило, происходит "размножение" научный направлений и школ, т. е. преобладают дивергентные тенденции. И именно это разнообразие подходов, концепций и интерпретаций конструктивно для выбора в "точках бифуркации" собственных устойчивых тенденций развития систем научного знания. Рост альтернативных научных школ перед научной революцией как бы заранее подготавливает системы знания к многовариантному будущему.

После научной революции, в период "нормальной науки", напротив, идет формирование мощного парадигмального течения, т. е. начинают проявляться тенденции конвергенции.

36. Типология научных революций. Эвристическая роль философии в подготовке и ходе этих революций

Революция – скачкообразный переход системы в новое качество. Человечество на протяжении своей многовековой истории пе­режило множество революций в мире науки и техники: промыш­ленная, электротехническая, электронная, информационная и даже «зеленая» революции. Само понятие «революция» свидетельствует о радикальных ка­чественных изменениях в мире знания, о перестройке основа­ний науки. Симптоматичны и названия научных трудов, появ­ляющихся в период научных революций — как правило, они на­чинаются словосочетаниями «Новые исследования», «Новые опыты», «Новые изобретения» и пр.

Научная революция может про­текать двояко: I) вызывать трансформацию специальной карти­ны мира без изменения идеалов и норм исследования, и 2) осу­ществлять радикальные изменения и в картине мира, и в систе­ме идеалов и норм науки.

Примеры первого типа: революция в медицине, вы­званная открытием В. Гарвея кругообращения крови (1628); рево­люция в математике в связи с открытием дифференциального ис­числения И. Ньютона и Г. Лейбница; кислородная теория Лавуа­зье; переход от механической картины мира к электромеханической в связи с открытием теории электромагнитного поля. Они не ме­няли познавательных установок классической физики, идеалов и норм исследования (признание жестко детерминированных связей процессов и явлений, исключение помех, связанных с приборами и средствами наблюдения, и т. д.).

Пример научной революции второго типа — открытия термоди­намики и последовавшая в середине XX в. квантово-механическая революция, которая вела не только к переосмыслению научной кар­тины мира, но и к полному парадигмальному сдвигу, меняющему также стандарты, идеалы и нормы исследования. Отвергалась субъектно-объектная оппозиция, изменялись способы описания и обоснования знания, признавались вероятностная природа изуча­емых систем, нелинейность и бифуркаиионность развития.

Выделяют четыре Типа научных революций по следующим основаниям: 1) появление новых фундаментальных теоретических концепций; 2) разработка новых методов; 3) открытие но­вых объектов исследования; 4) формирование новых методоло­гических программ.

Также выделяют типы научной революции По прочим основаниям: 1-по сегменту изменяющегося научн знания: открытие нов миров, методов, появление новых парадигм. 2-по широте охвата: глобальные революции, частные (в отдельной науке), комплексные (теория Дарвина, биолог и др).

Механизм возникновения научной революции описан Т. Куном. Симптомами являются: 1-выражение недовольства действующей парадигмой. 2-Покушение на «жесткое ядро» парадигмальной теории. 3-преобладание поисковых экспериментов над проверочными. 4-Повышеный интерес к основаниям науки.

Выделяют 4 глобальные Научные революции: становление классического естествознания, естественно-научная революция, формирование неклассической рациональности, формирование постнеклассической рациональности.

Пересмотр картины мира и идеалов познания всегда начинается с критического осмысления их природы. Если ранее они воспринимались как выражение самого существа исследуемой реальности и процедур научного познания, то теперь осознается их относительный, преходящий характер. Такое осознание предполагает постановку вопросов об отношении картины мира к исследуемой реальности и понимании историчности идеалов познания. Постановка таких вопросов означает, что исследователь из сферы специально научных проблем выходит в сферу философской проблематики. Философский анализ является необходимым моментом критики старых оснований научного поиска.

Кроме критической функции, философия выполняет конструктивную функцию, помогая выработать новые основания исследования. Ни картина мира, ни идеалы объяснения, обоснования и организации знаний не могут быть получены чисто индуктивным путем из нового эмпирического материала. Сам этот материал организуется и объясняется в соответствии с некоторыми способами его видения, а эти способы задают картина мира и идеалы познания. Новый эмпирический материал может обнаружить лишь несоответствие старого видения новой реальности, но сам по себе не указывает, как нужно перестроить это видение.

Перестройка картины мира и идеалов познания требует особых идей, которые позволяют перегруппировать элементы старых представлений о реальности и процедурах ее познания, элиминировать часть из них, включить новые элементы с тем, чтобы разрешить имеющиеся парадоксы и ассимилировать накопленные факты. Такие идеи формируются в сфере философского анализа познавательных ситуаций науки. Они играют роль весьма общей эвристики, обеспечивающей интенсивное развитие исследований.

Страница 307 из 642« Первая...102030...305306307308309...320330340...Последняя »